Abstract

Schramm-Loewner Evolution describes the scaling limits of interfaces in certain statistical mechanical systems. These interfaces are geometric objects that are not equipped with a canonical parametrization. The standard parametrization of SLE is via half-plane capacity, which is a conformal measure of the size of a set in the reference upper half-plane. This has useful harmonic and complex analytic properties and makes SLE a time-homogeneous Markov process on conformal maps. In this note, we show that the half-plane capacity of a hull $A$ is comparable up to multiplicative constants to more geometric quantities, namely the area of the union of all balls centered in $A$ tangent to $R$, and the (Euclidean) area of a $1$-neighborhood of $A$ with respect to the hyperbolic metric.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.