Abstract
Predicting protein-ligand binding affinities (PLAs) is a core problem in drug discovery. Recent advances have shown great potential in applying machine learning (ML) for PLA prediction. However, most of them omit the 3D structures of complexes and physical interactions between proteins and ligands, which are considered essential to understanding the binding mechanism. This paper proposes a geometric interaction graph neural network (GIGN) that incorporates 3D structures and physical interactions for predicting protein-ligand binding affinities. Specifically, we design a heterogeneous interaction layer that unifies covalent and noncovalent interactions into the message passing phase to learn node representations more effectively. The heterogeneous interaction layer also follows fundamental biological laws, including invariance to translations and rotations of the complexes, thus avoiding expensive data augmentation strategies. GIGN achieves state-of-the-art performance on three external test sets. Moreover, by visualizing learned representations of protein-ligand complexes, we show that the predictions of GIGN are biologically meaningful.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.