Abstract

It is observed that the Camassa–Holm equation describes pseudo-spherical surfaces and that therefore, its integrability properties can be studied by geometrical means. An sl(2, R)-valued linear problem whose integrability condition is the Camassa–Holm equation is presented, a ‘Miura transform’ and a ‘modified Camassa–Holm equation’ are introduced, and conservation laws for the Camassa–Holm equation are then directly constructed. Finally, it is pointed out that this equation possesses a nonlocal symmetry, and its flow is explicitly computed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.