Abstract

We present a new definition of influences in product spaces of continuous distributions. Our definition is geometric, and for monotone sets it is identical with the measure of the boundary with respect to uniform enlargement. We prove analogs of the Kahn–Kalai–Linial (KKL) and Talagrand’s influence sum bounds for the new definition. We further prove an analog of a result of Friedgut showing that sets with small “influence sum” are essentially determined by a small number of coordinates. In particular, we establish the following tight analog of the KKL bound: for any set in ℝn of Gaussian measure t, there exists a coordinate i such that the ith geometric influence of the set is at least $ct(1-t)\sqrt{\log n}/n$, where c is a universal constant. This result is then used to obtain an isoperimetric inequality for the Gaussian measure on ℝn and the class of sets invariant under transitive permutation group of the coordinates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.