Abstract

This paper describes the geometric in-flight calibration of the Modular Optoelectronic Multispectral Scanner MOMS-2P, which has collected digital multispectral and threefold along-track stereoscopic imagery of the earth's surface from the PRIRODA module of the Russian space station MIR from October 1996 to August 1999. The goal is the verification and, if necessary, the update of the calibration data, which were estimated from the geometric laboratory calibration. The paper is subdivided into two parts, describing two different procedures of geometric in-flight calibration. The first method is based on DLR matching software and is restricted to nadir looking channels, which are read out simultaneously. From a high number of individual point matches between the images of the same area taken by the different CCD arrays, the most reliable ones are selected and used to calculate shifts with components in and across flight direction between the CCD arrays. These actual shifts are compared to the nominal shifts, derived from the results of the laboratory calibration, and parameters of the valid camera model are estimated from both data sets by least squares adjustment. A special case of band-to-band registration are the two optically combined CCD-arrays of the nadir high-resolution channel. They are read out simultaneously with a nominal 10 pixel overlap in stereoscopic imaging mode A. The DLR matching software is applied to calculate the displacement vector between the two CCD-arrays. The second method is based on combined photogrammetric bundle adjustment using an adapted functional model for the reconstruction of the interior orientation. It requires precise and reliable ground control information as well as navigation data of the navigation-package MOMS-NAV. Nine contiguous image scenes of MOMS-2P data-take T083C building an about 550-km-long strip over southern Germany and Austria taken in March 1997 were evaluated. From both procedures calibration data are estimated, which are presented and compared to the lab-calibration results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.