Abstract

We introduce a geometric framework to study Newton's equations on infinite-dimensional configuration spaces of diffeomorphisms and smooth probability densities. It turns out that several important partial differential equations of hydrodynamical origin can be described in this framework in a natural way. In particular, the Madelung transform between the Schrödinger equation and Newton's equations is a symplectomorphism of the corresponding phase spaces. Furthermore, the Madelung transform turns out to be a Kähler map when the space of densities is equipped with the Fisher-Rao information metric. We describe several dynamical applications of these results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.