Abstract

Thermodynamics strongly restricts the direction of heat flow in static macroscopic thermal diffusive systems. To overcome this constraint, spatiotemporal modulated systems are used instead. Here, we unveil the underlying geometric heat pump effect in macroscopic driven thermal diffusion, which is crucial for achieving thermal nonreciprocity. We obtain a geometric expression to formulate the nontrivial current in a driven system, manifesting as an extra pumped heat ably diffusing from cold to hot that has no analogy in static setups. Moreover, we analyze the underlying geometric curvature of driven diffusive systems and derive no-pumping restriction theorems that constrain the thermal action under modulations and guide the optimization of driving protocols. Following the restrictions from geometry, we finally implement a minimum experiment and observe the predicted pumped heat in the absence of thermal bias at every instant, which is independent of the driving speed in the adiabatic limit, clearly validating the geometric theory. An extension of the geometric pump effect and no-pumping restrictions to macroscopic mass diffusion governed by Fick's law is also discussed. These results pave the way for designing and implementing nonreciprocal and topological diffusive systems under spatiotemporal modulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call