Abstract

Accurate prediction of binding free energy changes upon mutations is vital for optimizing drugs, designing proteins, understanding genetic diseases, and cost-effective virtual screening. While machine learning methods show promise in this domain, achieving accuracy and generalization across diverse data sets remains a challenge. This study introduces Geometric Graph Learning for Protein-Protein Interactions (GGL-PPI), a novel approach integrating geometric graph representation and machine learning to forecast mutation-induced binding free energy changes. GGL-PPI leverages atom-level graph coloring and multiscale weighted colored geometric subgraphs to capture structural features of biomolecules, demonstrating superior performance on three standard data sets, namely, AB-Bind, SKEMPI 1.0, and SKEMPI 2.0 data sets. The model's efficacy extends to predicting protein thermodynamic stability in a blind test set, providing unbiased predictions for both direct and reverse mutations and showcasing notable generalization. GGL-PPI's precision in predicting changes in binding free energy and stability due to mutations enhances our comprehension of protein complexes, offering valuable insights for drug design endeavors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.