Abstract
The dynamics of the Reynolds stress tensor for turbulent flows is described with an evolution equation coupling both geometric effects and turbulent source terms. The effects of the mean flow geometry are shown up when the source terms are neglected: the Reynolds stress tensor is then expressed as the sum of three tensor products of vector fields which are governed by a distorted gyroscopic equation. Along the mean flow trajectories, the fluctuations of velocity are described by differential equations whose coefficients depend only on the mean flow deformation. If the mean flow vorticity is small enough, an approximate turbulence model is derived, and its application to shear shallow water flows is proposed. Moreover, the approximate turbulence model admits a variational formulation which is similar to the one of capillary fluids.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.