Abstract

We consider a simple model for the fluctuating hydrodynamics of a flexible polymer in a dilute solution, demonstrating geometric ergodicity for a pair of particles that interact with each other through a nonlinear spring potential while being advected by a stochastic Stokes fluid velocity field. This is a generalization of previous models which have used linear spring forces as well as white-in-time fluid velocity fields.We follow previous work combining control theoretic arguments, Lyapunov functions, and hypo-elliptic diffusion theory to prove exponential convergence via a Harris chain argument. In addition we allow the possibility of excluding certain “bad” sets in phase space in which the assumptions are violated but from which the system leaves with a controllable probability. This allows for the treatment of singular drifts, such as those derived from the Lennard-Jones potential, which is a novel feature of this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.