Abstract

We show that for positive recurrent Markov chains on a general state space, a geometric rate of convergence to the stationary distribution $\pi$ in a "small" region ensures the existence of a uniform rate $\rho < 1$ such that for $\pi-\mathrm{a.a.} x, \|P^n(x, \bullet) - \pi(\bullet)\| = O(\rho^n)$. In particular, if there is a point $\alpha$ in the space with $\pi(\alpha) > 0$, the result holds if $|P^n(\alpha, \alpha) - \pi(\alpha)| = O(\rho^n_\alpha)$ for some $\rho_\alpha < 1$. This extends and strengthens the known results on a countable state space. Our results are put in the more general $R$-theoretic context, and the methods we use enable us to establish the existence of limits for sequences $\{R^nP^n(x, A)\}$, as well as exhibiting the solidarity of a geometric rate of convergence for such sequences. We conclude by applying our results to random walk on a half-line.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.