Abstract

The geometric configuration of the solid fuel is a key parameter affecting the fuel regression rate in hybrid rocket motors. In this paper, a semi-empirical regression rate model is developed to investigate the geometric effect on the fuel regression rate by incorporating the hydraulic diameter into the classical model. The semi-empirical model indicates that the fuel regression rate decreases with increasing hydraulic diameter and is proportional to d h - 0.2 when convective heat transfer is dominant. Then a numerical model considering turbulence, combustion, solid fuel pyrolysis, and a solid–gas coupling model is established to further investigate the geometric effect. Eight motors with different solid fuel grains are simulated, and four methods of scaling the regression rate between different solid fuel grains are compared. The results indicate that the solid fuel regression rates are approximate the same when the hydraulic diameters are equal. The numerical results verify the accuracy of the semi-empirical model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.