Abstract
We study geometric duality for convex vector optimization problems. For a primal problem with a -dimensional objective space, we formulate a dual problem with a -dimensional objective space. Consequently, different from an existing approach, the geometric dual problem does not depend on a fixed direction parameter, and the resulting dual image is a convex cone. We prove a one-to-one correspondence between certain faces of the primal and dual images. In addition, we show that a polyhedral approximation for one image gives rise to a polyhedral approximation for the other. Based on this, we propose a geometric dual algorithm which solves the primal and dual problems simultaneously and is free of direction-biasedness. We also modify an existing direction-free primal algorithm in such a way that it solves the dual problem as well. We test the performance of the algorithms for randomly generated problem instances by using the so-called primal error and hypervolume indicator as performance measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.