Abstract

This thesis presents a unified framework for geometric discretization of highly oscillatory mechanics and classical field theories, based on Lagrangian variational principles and discrete differential forms. For highly oscillatory problems in mechanics, we present a variational approach to two families of geometric numerical integrators: implicit-explicit (IMEX) and trigonometric methods. Next, we show how discrete differential forms in spacetime can be used to derive a structure-preserving discretization of Maxwell's equations, with applications to computational electromagnetics. Finally, we sketch out some future directions in discrete gauge theory, providing foundations based on fiber bundles and Lie groupoids, as well as discussing applications to discrete Riemannian geometry and numerical general relativity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.