Abstract

The index gear drive potential is defined for the estimation of the quality of spur gear drives as a maximum contact ratio obtained at the contact of teeth profiles along the full line of action. In this paper, a new method is proposed for the geometric design of symmetric and asymmetric involute meshing in which the contact ratio of the gear drive is equal to its potential. This method is appropriate for the geometric design of spur gears with a small teeth number and is based on the generalized model of involute meshing. The gear drive potential is assigned as an input value, from which, after appropriate calculations, the geometry of rack-cutters, gears and involute meshing can be determined. Using the proposed method, the areas of the realized potential and the areas of the existence of involute gear drives are defined. In addition, many numerical examples are solved. In the cases of symmetric and asymmetric meshing, the minimum teeth number is obtained when the gear drive potential is larger than one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.