Abstract

Abstract In this paper we study Computer Aided Geometric Design (CAGD) and Manufacturing (CAM) of developable surfaces. We develop direct representations of developable surfaces in terms of point as well as plane geometries. The point representation uses a Bezier curve, the tangents of which span the surface. The plane representation uses control planes instead of control points and determines a surface which is a Bezier interpolation of the control planes. In this case, a de Casteljau type construction method is presented for geometric design of developable Bezier surfaces. In design of piecewise surface patches, a computational geometric algorithm similar to Farin-Boehm construction used in design of piecewise parametric curves is developed for designing developable surfaces with C2 continuity. In the area of manufacturing or fabrication of developable surfaces, we present simple methods for both development of a surface into a plane and bending of a flat plane into a desired developable surface. The approach presented uses plane and line geometries and eliminates the need for solving differential equations of Riccatti type used in previous methods. The results are illustrated using an example generated by a CAD/CAM system implemented based on the theory presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.