Abstract

AbstractFerroelectric nanotubes offer intriguing opportunities for stabilizing exotic polarization domains and achieving new or enhanced functionalities by tailoring the complex interplay among the geometry, surface effects, crystal symmetry, and more. Here, phase‐field simulations to predict the room‐temperature equilibrium polarization domain structure in (001)pc PbZr0.52Ti0.48O3 (PZT) nanotubes are used (pseudocubic (pc)). The simulations incorporate the influence of surface‐tension‐induced strains, which have been ignored in existing computational studies. It is found that (001)pc PZT nanotubes can host a unique class of topological polarization domain structures comprising non‐planar flux‐closures and anti‐flux‐closures that are inaccessible with ferroelectrics of planar geometry (e.g., thin‐films, nanodots). It is shown that surface‐tension‐induced strain is significantly enhanced in thin‐walled nanotubes and thereby can lead to noticeable modulation of the flux closures. Domain stability map as a function of the nanotube wall thickness and height is established. The results provide a basis for geometrical engineering of domain structures and associated functional (e.g., piezoelectric, electrocaloric) responses in ferroelectric nanotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.