Abstract
In Lie sphere geometry, a cycle in $\RR^n$ is either a point or an oriented sphere or plane of codimension $1$, and it is represented by a point on a projective surface $\Omega\subset \PP^{n+2}$. The Lie product, a bilinear form on the space of homogeneous coordinates $\RR^{n+3}$, provides an algebraic description of geometric properties of cycles and their mutual position in $\RR^n$. In this paper, we discuss geometric objects which correspond to the intersection of $\Omega$ with projective subspaces of $\PP^{n+2}$. Examples of such objects are spheres and planes of codimension~$2$ or more, cones and tori. The algebraic framework which Lie geometry provides gives rise to simple and efficient computation of invariants of these objects, their properties and their mutual position in $\RR^n$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.