Abstract

Abstract The effects of outliers on linear regression are examined. The sensitivity of classical least‐squares (LS) procedures to outliers is shown to be associated with the geometric inconsistency between the data space and the analysis space. This is illustrated for both estimation and inference. A geometrically consistent procedure based on the Euclidean distance is proposed. This procedure involves the least absolute deviation (LAD) regression and a new permutation test for matched pairs (PTMP). Comparisons made with LS techniques demonstrate that the proposed procedure is more resistant to the existence of outliers in the data set and leads to more intuitive results. Applications and illustrations using meteorological and climatological data are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.