Abstract

In 1978, Friedberg and Lee introduced the phenomenological soliton bag model of hadrons, generalizing the MIT bag model developed in 1974 shortly after the formulation of QCD. In this model, quarks and gluons are confined due to coupling with a real scalar field ρ, which tends to zero outside some compact region S⊂R3 determined dynamically from the equations of motion. The gauge coupling in the soliton bag model runs as the inverse power of ρ, already at the semiclassical level. We show that this model arises naturally as a consequence of introducing the warped product metric dsM2+ρ2dsG2 on the principal G-bundle P(M,G)≅M×G with a non-Abelian group G over Minkowski space M=R3,1. Confinement of quarks and gluons in a compact domain S⊂R3 is a consequence of the collapse of the bundle manifold M×G to M outside S due to shrinking of the group manifold G to a point. We describe the formation of such regions S as a dynamical process controlled by the order parameter field ρ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.