Abstract

<abstract><p>The one-to-one property of injectivity is a crucial concept in computer-aided design, geometry, and graphics. The injectivity of curves (or surfaces or volumes) means that there is no self-intersection in the curves (or surfaces or volumes) and their images or deformation models. Bézier volumes are a special class of Bézier polytope in which the lattice polytope equals $ \Box_{m, n, l}, (m, n, l\in Z) $. Piecewise 3D Bézier volumes have a wide range of applications in deformation models, such as for face mesh deformation. The injectivity of 3D Bézier volumes means that there is no self-intersection. In this paper, we consider the injectivity conditions of 3D Bézier volumes from a geometric point of view. We prove that a 3D Bézier volume is injective for any positive weight if and only if its control points set is compatible. An algorithm for checking the injectivity of 3D Bézier volumes is proposed, and several explicit examples are presented.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.