Abstract

We suggest an approach based on geometric invariant theory to the fundamental lower bound problems in complexity theory concerning formula and circuit size. Specifically, we introduce the notion of a partially stable point in a reductive-group representation, which generalizes the notion of stability in geometric invariant theory due to Mumford [Geometric Invariant Theory, Springer-Verlag, Berlin, 1965]. Then we reduce fundamental lower bound problems in complexity theory to problems concerning infinitesimal neighborhoods of the orbits of partially stable points. We also suggest an approach to tackle the latter class of problems via construction of explicit obstructions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.