Abstract

The collocation method is extended to the special orthogonal group SO(3) with application to optimal attitude control (OAC) of a rigid body. A left-invariant rigid-body attitude dynamical model on SO(3) is established. For the left invariance of the attitude configuration equation in body-fixed frame, a geometrically exact numerical method on SO(3), referred to as the geometric collocation method, is proposed by deriving the equivalent Lie algebra equation inso(3)of the left-invariant configuration equation. When compared with the general Gauss pseudo-spectral method, the explicit RKMK, and Lie group variational integrator having the same order and stepsize in numerical tests for evolving a free-floating rigid-body attitude dynamics, the proposed method is higher in accuracy, time performance, and structural conservativeness. In addition, the numerical method is applied to solve a constrained OAC problem on SO(3). The optimal control problem is transcribed into a nonlinear programming problem, in which the equivalent Lie algebra equation is being considered as the defect constraints instead of the configuration equation. The transcription method is coordinate-free and does not need chart switching or special handling of singularities. More importantly, with the numerical advantage of the geometric collocation method, the proposed OAC method may generate satisfying convergence rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.