Abstract
The present investigation aims to examine the geometric properties of the normalized form of the combination of generalized Lommel–Wright function Jλ,μν,m(z):=Γm(λ+1)Γ(λ+μ+1)22λ+μz1−(ν/2)−λJλ,μν,m(z)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathfrak{J}_{\\lambda ,\\mu}^{\ u ,m}(z):=\\Gamma ^{m}(\\lambda +1) \\Gamma (\\lambda +\\mu +1)2^{2\\lambda +\\mu}z^{1-(\ u /2)-\\lambda} \\mathcal{J}_{\\lambda ,\\mu }^{\ u ,m}(\\sqrt{z})$\\end{document}, where the function Jλ,μν,m\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathcal{J}_{\\lambda ,\\mu}^{\ u ,m}$\\end{document} satisfies the differential equation Jλ,μν,m(z):=(1−2λ−ν)Jλ,μν,m(z)+z(Jλ,μν,m(z))′\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathcal{J}_{\\lambda ,\\mu}^{\ u ,m}(z):=(1-2\\lambda -\ u )J_{ \\lambda ,\\mu}^{\ u ,m}(z)+z (J_{\\lambda ,\\mu }^{\ u ,m}(z) )^{\\prime}$\\end{document} with Jν,λμ,m(z)=(z2)2λ+ν∑k=0∞(−1)kΓm(k+λ+1)Γ(kμ+ν+λ+1)(z2)2k\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ J_{\ u ,\\lambda}^{\\mu ,m}(z)= \\biggl(\\frac{z}{2} \\biggr)^{2\\lambda + \ u} \\sum_{k=0}^{\\infty} \\frac{(-1)^{k}}{\\Gamma ^{m} (k+\\lambda +1 )\\Gamma (k\\mu +\ u +\\lambda +1 )} \\biggl(\\frac{z}{ 2} \\biggr)^{2k} $$\\end{document} for λ∈C∖Z−\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\lambda \\in \\mathbb{C}\\setminus \\mathbb{Z}^{-}$\\end{document}, Z−:={−1,−2,−3,…}\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathbb{Z}^{-}:= \\{ -1,-2,-3,\\ldots \\}$\\end{document}, m∈N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$m\\in \\mathbb{N}$\\end{document}, ν∈C\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\ u \\in \\mathbb{C}$\\end{document}, and μ∈N0:=N∪{0}\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mu \\in \\mathbb{N}_{0}:=\\mathbb{N}\\cup \\{0\\}$\\end{document}. In particular, we employ a new procedure using mathematical induction, as well as an estimate for the upper and lower bounds for the gamma function inspired by Li and Chen (J. Inequal. Pure Appl. Math. 8(1):28, 2007), to evaluate the starlikeness and convexity of order α, 0≤α<1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$0\\leq \\alpha <1$\\end{document}. Ultimately, we discuss the starlikeness and convexity of order zero for Jλ,μν,m\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathfrak{J}_{\\lambda ,\\mu} ^{\ u ,m}$\\end{document}, and it turns out that they are useful to extend the range of validity for the parameter λ to λ≥0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\lambda \\geq 0$\\end{document} where the main concept of the proofs comes from some technical manipulations given by Mocanu (Libertas Math. 13:27–40, 1993). Our results improve, complement, and generalize some well-known (nonsharp) estimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.