Abstract

In this paper, we explore whether the geometric properties of the point distribution obtained by embedding the nodes of a graph on a manifold can be used for the purposes of graph clustering. The embedding is performed using the heat-kernel of the graph, computed by exponentiating the Laplacian eigen-system. By equating the spectral heat kernel and its Gaussian form we are able to approximate the Euclidean distance between nodes on the manifold. The difference between the geodesic and Euclidean distances can be used to compute the sectional curvatures associated with the edges of the graph. To characterise the manifold on which the graph resides, we use the normalised histogram of sectional curvatures. By performing PCA on long-vectors representing the histogram bin-contents, we construct a pattern space for sets of graphs. We apply the technique to images from the COIL database, and demonstrate that it leads to well defined graph clusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call