Abstract

We study families of holomorphic vector fields, holomorphically depending on parameters, in a neighborhood of an isolated singular point. When the singular point is in the Poincaré domain for every vector field of the family we prove, through a modification of classical Sternberg's linearization argument, cf. Nelson (1969) [7] too, analytic dependence on parameters of the linearizing maps and geometric bounds on the linearization domain: each vector field of the family is linearizable inside the smallest Euclidean sphere which is not transverse to the vector field, cf. Brushlinskaya (1971) [2], Ilyashenko and Yakovenko (2008) [5] for related results. We also prove, developing ideas in Martinet (1980) [6], a version of Brjuno's Theorem in the case of linearization of families of vector fields near a singular point of Siegel type, and apply it to study some 1-parameter families of vector fields in two dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.