Abstract
Given a control region Ω on a compact Riemannian manifold M, we consider the heat equation with a source term g localized in Ω. It is known that any initial data in L2(M) can be steered to 0 in an arbitrarily small time T by applying a suitable control g in L2([0,T]×Ω), and, as T tends to 0, the norm of g grows like exp(C/T) times the norm of the data. We investigate how C depends on the geometry of Ω. We prove C⩾d2/4 where d is the largest distance of a point in M from Ω. When M is a segment of length L controlled at one end, we prove C⩽α∗L2 for some α∗<2. Moreover, this bound implies C⩽α∗LΩ2 where LΩ is the length of the longest generalized geodesic in M which does not intersect Ω. The control transmutation method used in proving this last result is of a broader interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.