Abstract
ABSTRACTStochastic robustness of control systems under random excitation motivates challenging developments in geometric approach to robustness. The assumption of normality is rarely met when analyzing real data and thus the use of classic parametric methods with violated assumptions can result in the inaccurate computation of p-values, effect sizes, and confidence intervals. Therefore, quite naturally, research on robust testing for normality has become a new trend. Robust testing for normality can have counterintuitive behavior, some of the problems have been introduced in Stehlík et al. [Chemometrics and Intelligent Laboratory Systems 130 (2014): 98–108]. Here we concentrate on explanation of small-sample effects of normality testing and its robust properties, and embedding these questions into the more general question of testing for sphericity. We give geometric explanations for the critical tests. It turns out that the tests are robust against changes of the density generating function within the class of all continuous spherical sample distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.