Abstract

In this paper we consider aspects of geometric observability for hypergraphs, extending our earlier work from the uniform to the nonuniform case. Hypergraphs, a generalization of graphs, allow hyperedges to connect multiple nodes and unambiguously represent multi-way relationships which are ubiquitous in many real-world networks including those that arise in biology. We consider polynomial dynamical systems with linear outputs defined according to hypergraph structure, and we propose methods to evaluate local, weak observability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.