Abstract
The geometric interpretation of the expected value and the variance in real Euclidean space is used as a starting point to introduce metric counterparts on an arbitrary finite dimensional Hilbert space. This approach allows us to define general reasonable properties for estimators of parameters, like metric unbiasedness and minimum metric variance, resulting in a useful tool to better understand the logratio approach to the statistical analysis of compositional data, who's natural sample space is the simplex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastic Environmental Research and Risk Assessment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.