Abstract

In this paper we construct a “restriction” map from the cocenter of a reductive group G over a local non-archimedean field F to the cocenter of a Levi subgroup. We show that the dual map corresponds to parabolic induction and deduce that parabolic induction preserves stability. We also give a new (purely geometric) proof that the character of normalized parabolic induction does not depend on the parabolic subgroup. In the appendix, we use a similar argument to extend a theorem of Lusztig–Spaltenstein on induced unipotent classes to all infinite fields. We also prove a group version of a theorem of Harish-Chandra about the density of the span of regular semisimple orbital integrals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.