Abstract
We present a statistical mechanical description of randomly packed spherical particles, where the average coordination number is treated as a macroscopic thermodynamic variable. The overall packing entropy is shown to have two contributions: geometric, reflecting statistical weights of individual configurations, and topological, which corresponds to the number of topologically distinct states. Both of them are computed in the thermodynamic limit for isostatic and weakly underconstrained packings in 2D and 3D. The theory generalizes concepts of granular and glassy configurational entropies for the case of nonjammed systems. It is directly applicable to sticky colloids and predicts an asymptotic phase behavior of sticky spheres in the limit of strong binding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.