Abstract

Fractal and prefractal geometric models have substantial potential for contrib- uting to the analysis of flow and transport in porous media such as soils and reservoir rocks. In this study, geometric and hydrodynamic parameters of saturated 3D mass and pore-solid prefractal porous media were characterized using the lattice Boltzmann model (LBM). The percolation thresholds of the 3D prefractal porous media were inversely correlated with the fraction of micro-pore clusters and estimated as 0.36 and 0.30 for mass and pore-solid pre- fractal porous media, respectively. The intrinsic permeability and the dispersivity of the 3D pore-solid prefractals were larger than those of the 3D mass prefractals, presumably because of the occurrence of larger solid and pore cluster sizes in the former. The intrinsic permeabil- ity and dispersivity of both types of structure increased with increasing porosity, indicating a positive relationship between permeability and dispersivity, which is at odds with laboratory data and current theory. This discrepancy may be related to limitations of the convection dispersion equation at the relatively high porosity values employed in the present study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.