Abstract
Metal-dioxygen adducts, such as metal-superoxo and -peroxo species, are key intermediates often detected in the catalytic cycles of dioxygen activation by metalloenzymes and biomimetic compounds. The synthesis and spectroscopic characterization of an end-on nickel(II)-superoxo complex with a 14-membered macrocyclic ligand was reported previously. Here we report the isolation, spectroscopic characterization, and high-resolution crystal structure of a mononuclear side-on nickel(III)-peroxo complex with a 12-membered macrocyclic ligand, [Ni(12-TMC)(O(2))](+) (1) (12-TMC = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane). Different from the end-on Ni(II)-superoxo complex, the Ni(III)-peroxo complex is not reactive in electrophilic reactions, but is capable of conducting nucleophilic reactions. The Ni(III)-peroxo complex transfers the bound dioxygen to manganese(II) complexes, thus affording the corresponding nickel(II) and manganese(III)-peroxo complexes. The present results demonstrate the significance of supporting ligands in tuning the geometric and electronic structures and reactivities of metal-O(2) intermediates that have been shown to have biological as well as synthetic usefulness in biomimetic reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nature Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.