Abstract

This paper presents geometric algorithms for developing a re-configurable tooling system for fabrication of freeform objects. The proposed method involves a mold block, with n faces, in which the mold cavity is formed by moving a set of discrete pins on each face of the block. The part surfaces are approximated in the mold cavity using the pins from the suitable mold block faces. The geometric algorithms detailed in this paper analyze the part and determine the face of mold block from which the part model is approximated best. Further, the algorithms detect possible interference between pins from different faces, and suitably alter the approximating face to alleviate interferences. By moving these pins in and out of the mold block, the shape of the mold cavity is reconfigured rapidly to suit the changes in part geometry. Since, the proposed method approximates free-form objects with discrete pins, a surface-error calculation method is also developed to control the accuracy. Computer implementation and examples are also presented in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call