Abstract

In this paper we propose a new algorithm for extracting dominant points from the real contour of a digital shape. A polygonal approximation of the shape can be obtained by the set of dominant points. In the proposed algorithm, in the first step before searching for dominant points, the real contour is made sparse using a geometric concept, named convex deficiency tree. This helps to select a set of candidate points from real contour. In comparison with break points (which are initial points in many algorithms), the set of candidate points is more heuristic and the ratio of them to the all points of the contour is lower. In the second step of the proposed algorithm, the less informative candidate points are removed in an iterative manner. After removing one candidate point, its adjacent positions are searched to find more stable position for its neighbors. The comparative result of the proposed algorithm with others shows its efficiency. The algorithm finds an effective polygonal approximation for digital shapes especially for the real contours, which makes the method more practical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.