Abstract
The K-Discretizable Molecular Distance Geometry Problem ( $$^{\textit{K}}\hbox {DMDGP}$$ ) is a subclass of the Distance Geometry Problem (DGP), whose complexity is NP-hard, such that the search space is finite. In this work, the authors describe it completely using Conformal Geometric Algebra (CGA), exploring a Minkowski space that provides a natural interpretation of hyperspheres, hyperplanes, points and pair of points as computational primitives, which are largely relevant to the $$^{\textit{K}}\hbox {DMDGP}$$ . It also presents a theoretical approach to solve the $$^{\textit{K}}\hbox {DMDGP}$$ using ideas from classic Branch-and-Prune (BP) algorithm in this new fashion. Time complexity analysis and practical computational results showed that the naive implementation of the CGA is not as efficient as classical formulation. In order to illustrate this, preliminary results are displayed at the end and, also, directions to future developments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.