Abstract

To characterize the factors controlling pool shape, 30 different forced pools were created utilizing a 50% triangular constriction in a 0.5-m wide, 6-m long recirculating flume. Pools were scoured from an initial plane bed of sand with a d 50 of 0.25 mm. Pool depth and length were measured and used as dependent variables in least-squares, multiple-regression analyses. Discharge, channel-bed gradient and energy slope were the independent variables. Additional linear-regression analyses were conducted with either pool depth or length and stream power. Results indicate that both pool depth and length are primarily a function of discharge. Channel-bed and energy slopes are also significantly related to pool length but are not significantly related to pool depth. Stream power is significantly related to both pool depth and length, but R 2 values for pool depth versus discharge indicate stronger relations than those between pool depth and stream power. Observations on the type of geometric adjustment indicate that pools may minimize their rate of energy expenditure primarily through elongation. In contrast, pool depth appears to be more sensitive to the characteristics of the constrictions that create the forced pools. The results suggest that many field studies may suffer from cross-correlation problems. In particular, channel erodibility may exert a more dominant influence on pool geometry than hydraulic controls in many constriction-influenced channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.