Abstract
Abundance estimation is an important step of quantitative analysis of hyperspectral remote sensing data. Due to physical interpretation, sum-to-one and non-negativity constraints are generally imposed on the abundances of materials. This paper presents a geometric approach to fully constrained linear spectral unmixing using variable endmember sets for the pixels. First, an improved method for selecting per-pixel candidate endmember set is presented, which is suitable for dealing with hyperspectral image with large number of endmembers. To determine the optimal per-pixel endmember set from the entire endmembers present in the hyperspectral scene, an iterative partially constrained geometric unmixing is then performed, in which subspace projection is used for fully constrained least square estimation. The performance of the resulting unmixing algorithm is evaluated by comparison with benchmark unmixing algorithm on synthetic and real hyperspectral data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Hybrid Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.