Abstract
Abstract. Agriculture is a very important economic sector in Morocco, which requires a set of tools to improve agricultural production. Among these tools, the use of geomembrane basins. The latter is of great importance in smart farming planning, management practices or even in livestock use. In this context, this study evaluates a recognition and classification of the geomembrane basin using remote sensing satellite images; based on the Yolov3 deep learning neural network. This paper first adjusts the network model to make it suitable for detecting small targets on remote sensing images, then uses the k-means algorithm to calculate the grid size of the Yolo network model suitable for geomembrane basins, then uses yolov3 to train the data that makes up the satellite remote sensing imagery. The network model for the detection of the geomembrane basins is obtained by the test phase. Finally, the geomembrane basin detection model adapted to the remote sensing image is obtained in the validation phase. Through the research and analysis of the experimental results, it can be seen that this method effectively detects the geomembrane basins in the remote sensing images and ensures the high detection accuracy of the experimental results, which gave us an accuracy of 75%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.