Abstract

Abstract Water flooding has been widely used as secondary oil recovery method in the clastic reservoirs in PDO. Field development plan of this field requires water injection under matrix injection conditions. The field consists of stacked Gharif sand stone reservoirs with variable degree of depletion. Increased injection volumes at economical rate, could induce hydraulic fracturing where it is very important to manage fracture growth and reducing risk for out of zone injection. The success of water flood development depends on an optimal injection pressure, which requires knowledge of formation fracture pressures and geomechanical rock properties. Efficient geomechanical analysis and workflow integrating data from well tests, field performance, water injection history and monitoring data was implemented for this study to provide guidance on optimum water injection pressure. Field stress tests, such as Leak off Tests (LOT) and micro fracs were analyzed to derive the fracture pressures. Gharif formation in these stacked reservoir formations have been significantly depleted hence a reduction in fracture pressure was required to be assessed. Depletion stress path coefficient, which is the ratio of change of fracture pressure and reservoir depletion, was derived based on historic field data. Data from well tests, field water injection performance was used for Modified Hall plot analysis and other diagnostic plots to provide better insight on active water injection operating conditions (fracture, matrix and plugging). Finally, for injector operating above the fracture pressure, Produced Water Re-Injection (PWRI) model was used to simulate expected fracture dimensions, and quantify the out of zone injection risk. Results of this study indicate that the decrease in fracture pressure in Gharif formations is about 60% of the change in pore pressure (depletion). Qualitative and quantitative analyses were able to characterize the operating injection conditions (matrix vs. fractured) for active injectors. Interpreted fracture pressure from Gharif water injector diagnostic plots demonstrates good alignment with the measured fracture pressure from field tests. The results reveal that most of the water injector wells, particularly in the depleted formations are operating above fracturing pressure. Predicted fracture dimensions form the PWRI model calibrates well with the field monitoring data. Outcome of this study provided fracture pressure estimate for Gharif formation with depletion and provide guidance on optimum water injection pressure to improve waterflood management. Stress path chart provide continuous improvement and quick decision for water flood operation. Results quantified the induced fracturing to mitigate the risk of out of zone injection and/or loss of sweep efficiency. Additionally, the results provide continuous critical input for fracture gradient for drilling and cement design for wells through depleted stacked reservoirs in other field within Gharif formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call