Abstract

Geopolymer has recently become an attractive alternative to traditional binders (e.g., cement and lime) used for chemical soil improvement, with several environmental benefits including lower toxic emissions and energy consumption. This paper presents an evaluation of the geomechanical behaviour of soft clay treated with fly-ash-based geopolymer incorporating slag for deep soil mixing (DSM) applications. The geomechanical properties of stabilised clay were evaluated using unconfined compressive strength (UCS) tests and durability against wetting–drying. Thermal conductivity and pH tests along with microstructural analysis using scanning electron microscopy (SEM) were also performed to provide insights into the effect of geopolymer on treated clay. The results indicate that the inclusion of geopolymer with the increase in curing time and activator content considerably improves the geomechanical performance of geopolymer-treated soft clay in terms of stress–strain response and attainable peak compressive strength. Although it was found that a small percentage of geopolymer can enhance the initial compressive response, a larger dosage of geopolymer up to 30% was necessary to maintain stable durability performance over successive wetting–drying cycles. Such improved durability performance is related to the enhanced soil structure due to the cementation development and overall reduction in thermal conductivity. The reduction in thermal conductivity of treated clay was found to be activator-dependent and was suppressed steadily with the increase in activator concentration. Overall, geopolymer-treated clay showed promising potential for DSM applications due to its enhanced strength and durability responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call