Abstract
Profitable exploitation of unconventional shale gas reservoirs relies on the success of hydraulic fracturing stimulation. This is more likely in brittle rock formations because natural and hydraulic fractures remain open after stimulation, allowing for more hydrocarbon production. Identification of the most favourable depth intervals relies on the robust analysis of available well-logs, and on laboratory-derived mechanical and elastic data obtained under controlled stresses replicating the actual conditions at depth. Beyond their use for predictive geomechanical modelling such laboratory data can act as calibration points for existing well-logs. Well-logs can also be used to guide the selection of the rock samples to be characterised and tested in the laboratory, ensuring that they are representative of the rock formation. Here we apply the above principles and demonstrate how this improves the geomechanical appraisal of the Goldwyer formation and assesses its prospectivity. This workflow integrates Rock-eval geochemical analyses, elastic properties, anisotropy, in-situ stress state and pore pressure, mechanical brittleness and fracturing indices derived from petrophysical and sonic logs in the Theia-1 and Pictor East-1 wells. We estimated an average total organic carbon of 2 w. t.% (maximum 5 w. t.%), a moderate to high dynamic Young's modulus (14–52 GPa), a low Poisson's ratio (0.24–0.27), and an average elasticity-based brittleness index B1 of 41% in the deeper G-III unit. This unit also exhibits a low differential horizontal stress ratio and a high fracture index. Such attributes suggest a good prospectivity of the G-III unit, not only in terms of potential resources but as importantly in terms of fracability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Rock Mechanics and Mining Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.