Abstract

Taking the sampled every minute values of the horizontal, declination and vertical componentsH, D, Z and the intensity of total field F calculated fromH andZ on the magnetograms at ten geomagnetic observatories in China in the same periods, and at the China Antarctic Great Wall Station (CAGWS), the authors conducted the maximum entropy analysis and band-pass filtration of these data and obtained the following results: (1) At the periodT=10 − 90 min geomagnetic solar flare effect (sfe) is evident on the sunlit hemisphere. It is more pronounced at periods 15, 20, 25 and 30 min, and most prominent at 30 – 35 min. The solar X-ray spectra at the same time showed their peaks at 10 and 15 min; (2) The periodT=10 − 70 min of sfe at the CAGWS in the western Hemisphere was also recognizable after spectral analysis and filtration, but the corresponding period of the maximum amplitude was different from that in the sunlit hemisphere. The results further proved that the geomagnetic effect of solar flares could also be observed in the dark hemisphere; (3) The subsolar points of two solar flares were found around Lanzhou, and the associated current density in the ionosphere was about 24 A/km. The transitional zone from positive to negative sfe was found around the geographic latitudeϕ=22° − 24°N, where the sfe inH-crochet was almost illegible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call