Abstract

Geo magnetically induced currents (GICs) can cause saturation of the magnetic core of transformers in a power system. This saturation can conduce to generating harmonic currents, voltage-control problems and overheating of the transformer internal components, leading to gas relay alarm/operation and possible damage. In this work, GICs effects have been analyzed on hybrid PV-wind system transformers. The system implemented through using Power System Computer Aided Design (PSCAD/EMTDC) platform and made up of 2.1 MW wind farm, 2 MW solar photovoltaic (PV) farm, power storage system and load. Then the system is integrated with 33 kV grids through a 480V AC bus and step-up wye/delta transformer. In addition, Pi-section has been used between different parts of the system. The GIC is modeled as a controlled DC voltage source and inserted into the system through a neutral point of a wind turbine (WT) transformer. The simulation results of reactive power, voltage and current waveforms, and non-linear behavior due to asymmetric saturation of the magnetic core in the transformer due to 100 A GIC current injections are obtained. Moreover, different GIC blocking devices have been applied to mitigate or eliminate the flow of GIC to the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.