Abstract

The Talaud Islands lie at the northern margin of the collision zone between the Sangihe and Halmahera island arc systems. Rock units on Talaud are Neogene marine strata, basalt and andesite, tectonic mélange, and ophiolite. The units are exposed in N–S trending belts that are commonly separated by faults. The marine strata consist of tuffaceous siltstone, sandstone, shale and marl. They are strongly deformed by west-verging folds with wavelengths of 20–500 m. Volcanic rocks of island arc affinity are exposed on the east coast of Karakelang Island and appear to be interbedded with the lowermost marine strata. Tectonic mélanges contain blocks of serpentinite, gabbro, basalt, red middle Eocene chert and limestone, and greywacke turbidites. The blocks range in length from a few millimetres to hundreds of metres, and are enclosed in a scaly clay matrix. Several mappable slabs of ophiolite are separated by Tertiary strata or mélange. The dismembered ophiolites consist of serpentized peridotite, gabbro, spilites and cherts. Locally, the mélanges and ophiolites are thrust over the younger sedimentary rocks along east-dipping faults. The dominant eastward dips of mélange foliation, the westward vergence of structures in the Neogene strata, the Eocene ages of the cherts, and the Miocene age of the strata overlying the ophiolite slabs suggest that the ophiolites are pieces of Eocene or older oceanic crust (derived from a mid-ocean ridge or back-arc basin) and upper mantle that were emplaced as thrust slices into the lower slope of a west-facing arc during the Miocene and have been uplifted during arc—arc collision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call