Abstract

AbstractKhan Altai Au deposit is located near the N margin of the Neoproterozoic‐Cambrian Lake terrain in SW Mongolia, about 5 km from its contact with the Proterozoic‐Archean Baydrag craton, and 18 km SE of the Khantaishir ophiolite, which was emplaced in the Late Cambrian. The host rocks are strongly deformed and metamorphosed to lower greenschist facies, and of uncertain age. They comprise a sequence of rhyolitic volcaniclastics and porphyritic flows interbedded with laminated siltstone, basaltic andesite and faulted against dolomite. Low‐grade gold mineralization (up to 2 ppm Au) is hosted mainly in rhyolitic volcanics and extends over an area of about 1,100 × 160 m with a vertical extent of about 200 m. It is associated with disseminated pyrite (2–10% by vol) but includes high‐grade zones (up to 183 ppm Au over 1 m) related to cm‐wide quartz‐native Au‐pyrite veins. The Au mineralized zone also encompasses VMS mineralization (currently of minor extent), characterized by massive pyrite‐sphalerite lenses and quartz‐chalcopyrite stringer zones. A larger VMS deposit (Ereen Budagt, about 10 Mt sulfide ore) is found 6 km to the SSE in a similar geological setting. The main alteration assemblage is quartz‐white mica‐albite, but with minor carbonate, chlorite, epidote‐actinolite and pyrophyllite‐diaspore‐dickite alteration. Gold mineralization is related to zones of strong tectonic foliation and formation of phengitic white mica, with an outward zonation to high Al white mica. Pyrite is typically euhedral, and exhibits concentric growth zones, as well as quartz pressure shadows to enclosing foliation, consistent with syngenetic growth during metamorphism and deformation. Other sulfides include arsenopyrite, sphalerite and possible marcasite. Preliminary LA‐ICPMS mapping shows pyrite rims are enriched in Au, As, Co, Cu, Ni, Pb, Ag, Mo and Se, the pyrite core is enriched in Co, Bi, Te, and rhyolitic host rock is enriched in K, Ba, V and Tl. Whole rock geochemistry of basaltic andesite to rhyolite, shows N‐MORB characteristics for basaltic andesite, as well as a subduction signature for all rocks, and high MgO (~8%), TiO2 (~1%) and low Ni, Cr content in basalt, compatible with a back arc tectonic setting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call