Abstract

Pyrite- and pyrrhotite-rich mudstones are spatially associated with Cambrian (~ 512–509 Ma) volcanogenic massive sulfide (VMS) deposits throughout the Tally Pond group, central Newfoundland, Canada. At the Duck Pond mine, sulfide-rich mudstones are hosted within a weakly mineralized upper block that structurally overlies the deposit but is older (~ 513 versus 509 Ma). The mudstones are laminated, 10–30-cm thick, and pyrite- and pyrrhotite-rich and occur along pillow lava selvages, or in between pillow lavas, rhyolite flows, and volcaniclastic rocks. The mudstones are laterally extensive and proximal to the mudstone host rocks are hydrothermally altered to epidote-quartz-chlorite (basalt host) and sericite-quartz (rhyolite host). Lithogeochemical data for the sulfide-rich mudstones reflect the varying contributions of elements from sedimentary detritus, hydrothermal discharge, and hydrogenous scavenging from middle Cambrian seawater. The mudstones have minor detrital element abundances and significant hydrothermal element enrichments (i.e., elevated Fe2O3, S, Pb, Zn, Cu, and Ba concentrations, high Fe/Al ratios). The hydrothermal mudstones are also enriched in oxyanions (i.e., P2O5, U, V, Cr, Ni, Co, and Hg), interpreted to have been enriched via oxidative scavenging from seawater by Fe-oxide/oxyhydroxide particles. The mudstones also have REE-Y signatures similar to modern oxygenated seawater with high Y/Ho and negative Ce anomalies (Ce/Ce* = 0.40–0.86; average = 0.58), which correlate with adsorbed oxyanion concentrations. The low Eu/Eu* (1.02–1.86; average = 1.22) in the mudstones suggest that they were deposited from low-temperature (< 250 °C), Fe-rich hydrothermal fluids that likely formed a buoyant plume into an oxygenated water column. The REE-Y-oxyanion signatures suggest that the particles within the hydrothermal plume had sufficient residence time to scavenge oxyanions from seawater and inherit a middle Cambrian seawater signature. The predominant seawater REE-Y-oxyanion signature in the Duck Pond upper block sulfide-rich mudstones suggests that they are distal hydrothermal sedimentary rocks that could have formed up to 10 km from their original vent sources. Correspondingly, to utilize hydrothermal mudstones as vectors to mineralization in the Tally Pond belt, and similar belts globally, it is critical to identify vent-proximal samples that have hydrothermal signatures (i.e., high Fe/Al, base metals, Ba, S), with subdued seawater and adsorption signatures (i.e., chondritic Y/Ho, low P2O5, Ni, U, Co, Cr, V, and Hg), indicating minimal residence time in the water column and deposition proximal to the vent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call