Abstract

A large lower Eocene bentonite deposit at the top of Sinn El-Kaddab plateau, southern Egypt, is investigated. It forms isolated anticlinal hills as mesa and cuesta geomorphic units. The Sinn El-Kaddab plateau (497 m above sea level) with Gebel Abyad in northern Sudan represent the most southern margin of Tethys realm in East Africa. Clay and silt fractions constitute up to 95 % of the bentonite and calcium montmorillonite is the predominant phase (70–87 %). These sediments were deposited during the Paleocene–Eocene Thermal Maximum (PETM) event. Grain-size distribution in conjunction with their geologic setting argues in favor of a low energy deep hemipelagic, restricted basin within the outer shelf zone. They suggest sporadic deposition in a basin characterized by relief oscillation, in response to continuous tectonic uplifting. The sediments of the peripheral parts of the basin are more calcareous and were deposited in an arid climatic condition. Calcium montmorillonite was deposited in subtropical warm climate, with alternating wet and dry seasons. Compositionally, the bentonite shales are basic to intermediate and exhibit a rather limited range of K2O/Na2O and SiO2/Al2O3 ratios. They suggest mature polycyclic siliciclastics as the main provenance and within-plate alkali basalts as a main igneous precursor. They are the product of intensive physical weathering process in response to combined effects of both tectonic disturbance and prevailed climatic conditions during the PETM event. Geochemically, they are interpreted in terms of mixing of two end-members: pure clastic terrigenous component (inherited from the source area) and carbonate-rich matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call