Abstract

The Proterozoic Xianglushan Fe-Cu orefield (western Sichuan) is located in the Huili–Dongchuan ore belt on the southwestern margin of the Yangtze Block in SW China. The orefield has experienced complex magmatotectonic activities, and hosts a wide variety of Fe oxide-(Cu-Au) deposits. At Xianglushan, the orebodies are made of stratabound magnetite–hematite orebodies superimposed by vein-type chalcopyrite mineralization. The stratabound Fe orebodies are hosted mainly in the Proterozoic volcanic-sedimentary rocks of the lower Yinmin Formation, whilst the Cu vein or stockwork ores were mainly emplaced into the upper part of the footwall volcanic rocks and the lower part of the Fe orebodies. We divided the alteration/mineralization and their fluid inclusions (FIs) into the (I) sodic-calcic alteration, (II) potassic-silicic-sericite alteration and Fe-(Cu) mineralization, and (III) carbonate alteration and Cu mineralization stages. Stage II FIs are mainly two-phase (vapor-liquid), and are featured by medium temperature (348 to 379 °C) and high salinity (21.8 to 22.9 wt % NaCl eqv). Their generally negative calcite δ13C (−4.1‰ to −3.1‰) and δ18OH2O (12.2‰ to 15.3‰) values reveal that the Stage II ore fluids have had a seawater-magmatic fluid mixed source. Late Stage II pyrite has δ34S (−3.3‰ to 13.7‰), 206Pb/204Pb (17.663 to 18.982), 207Pb/204Pb (15.498 to 15.824) and 208Pb/204Pb (37.784 to 38.985), suggesting that the ore-forming materials were derived from dominantly upper crustal source. Stage III FIs are also mainly two-phase (vapor-liquid), and are featured by lower temperature (206 to 267 °C) and salinity (19.0 to 22.5 wt % NaCl eqv) than their Stage II counterparts. The Stage III ore fluids were also likely derived from a meteoric–magmatic mixed source with greater magmatic influence, as indicated by the generally negative calcite δ13C (−6.9‰ to −4.6‰) and δ18OH2O (6.3‰ to 9.2‰) values. Similar to the late Stage II pyrite, the Stage III chalcopyrite δ34S (−4.6‰ to 5.2‰) and Pb isotopes (206Pb/204Pb = 18.198 to 18.987; 207Pb/204Pb = 15.534 to 15.876; and 208Pb/204Pb = 37.685 to 39.476) also suggest a crustal ore-forming material source. Therefore, we suggest that the Fe-(Cu) and Cu mineralization at Xianglushan had similar ore fluid and material sources, although the magmatic influence increased in the later stage. This resembles many Fe-(Cu) deposits in the Huili–Dongchuan ore belt. We conclude that the Xianglushan Fe-Cu deposits are both similar to and different from typical iron-oxide copper gold (IOCG) deposits in terms of alteration styles and hydrothermal mineral assemblages, and are thus best classified as IOCG-like deposits hosted in submarine volcanic-sedimentary rocks. Considering the Mesoproterozoic regional tectonics in the southwestern Yangtze Block, we propose that the Xianglushan ore formation occurred in an intra-/back-arc inversion setting, possibly related to the closure of the Anning ocean basin.

Highlights

  • The Huili–Dongchuan ore belt in western Sichuan is located on the southwestern margin of the Yangtze craton, and has experienced various phases of tectonomagmatic activities [1,2,3,4,5,6,7]

  • iron-oxide copper gold (IOCG)-like mineral systems in the Chinese Eastern Tianshan [40,41,42], and we suggest that the Xianglushan deposits are best classified as submarine volcanic-hosted and IOCG-like

  • Fluid inclusion, and C-O-S-Pb isotope data suggest that the Xianglushan Fe-Cu ore formation was a two-stage process

Read more

Summary

Introduction

The Huili–Dongchuan ore belt in western Sichuan is located on the southwestern margin of the Yangtze craton, and has experienced various phases of tectonomagmatic activities [1,2,3,4,5,6,7]. The ore belt contains a number of large-medium Fe-Cu deposits, such as Lala, Xikuangshan, Luoxue, Yinmin, and Tangdan, and is an important Fe-Cu mineral province in China [8]. Previous mineral exploration and research have been mostly dedicated to the eastern part (i.e., the Dongchuan section), whereas the western part (i.e., Huili section) was poorly explored or understood. The recent discovery of the Xianglushan orefield represents a major exploration breakthrough, where previously only the Lala deposit and a few prospects were found. The deposit type of the Xianglushan deposits has been loosely constrained as volcanic-sedimentary types, but recently there are suggestions that some of these deposits (e.g., Lala) are of IOCG-type/-like [9,10,11]

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call